Tokamak MHD (TMHD) model for disruption studies

TMHD utilizes the experimental fact that disruptive instabilities in tokamaks represent a fast equilibrium evolution

$$au_{MHD} \simeq \underbrace{R/V_A}_{<1~\mu s} ~\ll ~~ \underbrace{ au_{TMHD}}_{\simeq 1~ms} ~< ~~ \underbrace{ au_{transport}}_{\simeq 0.1~s} ~\ll ~~ \underbrace{ au_{resistive}}_{\simeq 1~s}$$

with excitation of sheet currents or islands at the resonant surfaces and surface currents at the plasma boundary.

Eq. of motion	$oldsymbol{\lambda}\deltaec{r}=- abla p+(ec{\jmath} imesec{B})$	No inertia, no velocity, no time, no Courant limitation on time step
Ampere's law	$oxed{ec{B}=(abla imesec{A}), \mu_0ec{\jmath}=(abla imesec{B})}$	Standard form
Faraday's law	$-rac{\partial ec{A}}{\partial t} - abla arphi_E + (ec{V} imes ec{B}) = rac{ec{\jmath}}{\sigma}$	Standard, with a non-standard meaning: it determines the time rate and \vec{V} . No boundary condition for V_{normal} is necessary
$\sigma = \sigma(T_e)$	$(ec{B}\cdot abla\sigma)=0$	Plasma anisotropy, $(ec{B} \cdot abla T_e) \simeq 0$ is explicitly specified
$ec{V}\equivrac{\partial\delta ext{r}}{\partial t}$	$(abla \cdot \vec{V}) = 0$	replaces the equation of state

Recent success of TMHD was phenomenal:

- (a) Theoretical discovery of Hiro currents (2007)
- (b) 100 % consistency with data on all JET 4854 disruptions
- (c) Prediction of Hiro currents in VDE on EAST (2011)
- (d) Confirmation of Hiro currents on EAST (2012)

TMHD motivates new numerical approaches:

- (a) Consistent with plasma anisotropy and scales separation
- (b) Consistent with separation of plasma physics scales
- (c) With no Courant limitations on time step and on S-factor Looking simple, TMHD cannot be simulated by present numerical codes (M3D, TSC, NIMROD, ...)

Special schemes for TMHD are now defined:

- (a) Use of new Reference Magnetic Coordinates (RMC)
- (b) Adaptive grids based on RMC, Hermite finite elements
- (c) Fast Cholesky decomposition powered by GPU

Applicability of TMHD to tokamak plasma increases with increase in its temperature and the size, thus, opening a way to simulate the burning plasma dynamics.

EAST: As TMHD theory predicted, only downward VDE generate Hiro currents

DSC code: decay of Hiro currents, plasma motion, and consumption by the tiles